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1 General Description

This document describes a convention for compressing n-dimensional images and storing the result-
ing byte stream in a variable-length column in a FITS binary table. The FITS file structure outlined
here is independent of the specific data compression algorithm that is used. The implementation
details for 4 widely used compression algorithms are described here, but any other compression
technique could also be supported by this convention.

The general principle used in this convention is to first divide the n-dimensional image into
a rectangular grid of subimages or ‘tiles’. Each tile is then compressed as a block of data, and
the resulting compressed byte stream is stored in a row of a variable length column in a FITS
binary table. By dividing the image into tiles it is generally possible to extract and uncompress
subsections of the image without having to uncompress the whole image. The default tiling pattern
treats each row of a 2-dimensional image (or higher dimensional cube) as a tile, such that each tile
contains NAXIS1 pixels. This default many not be optimal for some applications or compression
algorithms, so any other rectangular tiling pattern may be defined using the ZTILEn keywords that
are described below. In the case of relatively small images it may be sufficient to compress the entire
image as a single tile, resulting in an output binary table with 1 row. In the case of 3-dimensional
data cubes, it may be advantageous to treat each plane of the cube as a separate tile if application
software typically needs to access the cube on a plane by plane basis.

2 Keywords

The following keywords are defined by this convention for use in the header of the FITS binary
table extension to describe the structure of the compressed image.

• ZIMAGE (required keyword) This keyword must have the logical value T. It indicates that the
FITS binary table extension contains a compressed image, and that logically this extension
should be interpreted as an image and not as a table.

• ZCMPTYPE (required keyword) The value field of this keyword shall contain a character string
giving the name of the algorithm that must be used to decompress the image. Currently,
values of GZIP 1, RICE 1, PLIO 1, and HCOMPRESS 1 are reserved, and the corresponding
algorithms are described in a later section of this document.

• ZBITPIX (required keyword) The value field of this keyword shall contain an integer that gives
the value of the BITPIX keyword in the uncompressed FITS image.
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• ZNAXIS (required keyword) The value field of this keyword shall contain an integer that gives
the value of the NAXIS keyword in the uncompressed FITS image.

• ZNAXISn (required keywords) The value field of these keywords shall contain a positive integer
that gives the value of the NAXISn keywords in the uncompressed FITS image.

• ZTILEn (optional keywords) The value of these indexed keywords (where n ranges from 1 to
ZNAXIS) shall contain a positive integer representing the number of pixels along axis n of
the compression tiles. Each tile of pixels is compressed separately and stored in a row of a
variable-length vector column in the binary table. The size of each image dimension (given
by ZNAXISn) is not required to be an integer multiple of ZTILEn, and if it is not, then the last
tile along that dimension of the image will contain fewer image pixels than the other tiles.
If the ZTILEn keywords are not present then the default ’row by row’ tiling will be assumed
such that ZTILE1 = ZNAXIS1, and the value of all the other ZTILEn keywords equals 1.

The compressed image tiles are stored in the binary table in the same order that the first pixel
in each tile appears in the FITS image; the tile containing the first pixel in the image appears
in the first row of the table, and the tile containing the last pixel in the image appears in the
last row of the binary table.

• ZNAMEn and ZVALn (optional keywords) These pairs of optional array keywords (where n is
an integer index number starting with 1) supply the name and value, respectively, of any
algorithm-specific parameters that are needed to compress or uncompress the image. The
value of ZVALn may have any valid FITS datatype. The order of the compression parameters
may be significant, and may be defined as part of the description of the specific decompression
algorithm.

• ZMASKCMP (optional keyword) Used to record the name of the image compression algorithm
that was used to compress the optional null pixel data mask. See the“Preserving undefined
pixels with lossy compression” section for more details.

• The following 8 optional keywords are defined to store a verbatim copy of the the value
and comment fields of the corresponding keywords in the original uncompressed FITS image.
These keywords can be used to reconstruct an identical copy of the original FITS file when
the image is uncompressed.

– ZSIMPLE - preserves the original SIMPLE keyword

– ZTENSION - preserves the original XTENSION keyword

– ZEXTEND - preserves the original EXTEND keyword

– ZBLOCKED - preserves the original BLOCKED keyword

– ZPCOUNT - preserves the original PCOUNT keyword

– ZGCOUNT - preserves the original GCOUNT keyword

– ZHECKSUM - preserves the original CHECKSUM keyword

– ZDATASUM - preserves the original DATASUM keyword

The ZSIMPLE, ZEXTEND, and ZBLOCKED keywords may only be used if the original uncompressed
image was contained in the primary array of the FITS file. The ZTENSION, ZPCOUNT, and
ZGCOUNT keywords may only be used if the original uncompressed image was contained in in
IMAGE extension.
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• ZQUANTIZ (optional keyword) This keyword records the name of the algorithm that was
used to quantize floating-point image pixels into integer values which are then passed to
the compression algorithm, as discussed further in section 4 of this document.

• Other Keywords The FITS header of the compressed image may contain other optional key-
words. If a FITS primary array or IMAGE extension is compressed using the convention
described here, it is recommended that all the keywords in the header of the original image,
except for the mandatory keywords mentioned above, be copied verbatim and in the same
order into the header of the binary table extension that contains the compressed image. All
these keywords will have the same meaning and interpretation as they did in the original
image, even in cases where the keyword is not normally expected to occur in the header of
a binary table extension (e.g., the BSCALE and BZERO keywords, or the World Coordinate
System keywords such as CTYPEn, CRPIXn and CRVALn).

3 Columns

The following columns in the FITS binary table are defined by this convention. The order of the
columns in the table is not significant. The column names (given by the TTYPEn keyword) are
shown here in upper case letters, but the case is not significant.

• COMPRESSED DATA (required column) Each row of this variable-length column contains the
byte stream that was generated as a result of compressing the corresponding image tile. The
datatype of the column (as given by the TFORMn keyword) will generally be either ’1PB’,

’1PI’, or ’1PJ’, depending on whether the compression algorithm generates an output stream
of 8-bit bytes, 16-bit integers, or 32-bit integers, respectively. If it is not possible to efficiently
compress a particular image tile, then the COMPRESSED DATA vector in the corresponding row
will have a length of zero, and the uncompressed tile pixels will be written instead to the
UNCOMPRESSED DATA column described below.

• UNCOMPRESSED DATA (optional column) This variable length column will contain the uncom-
pressed pixels for any tiles that cannot be compressed. The datatype of this column will
usually correspond to the datatype of the original image as shown in the following table:

Datatype BITPIX TFORMn

byte 8 ’1PB’
short int 16 ’1PI’
long int 32 ’1PJ’
float -32 ’1PE’
double -64 ’1PD’

If all the tiles in an image are compressed, then the UNCOMPRESSED DATA column is not re-
quired.

• ZSCALE and ZZERO (optional columns) These columns give the linear scale factor and zero
point offset which may be needed to transform the raw uncompressed values back to the
original image pixel values (or at least a close approximation to the original values) using the
following formula:

image pixel value = (uncompressed value * ZSCALE) + ZZERO
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ZSCALE and ZZERO generally have double precision values and have default values of 1.0 and
0.0, respectively. If the same values of ZSCALE and ZZERO apply to every tile in the image,
then they may be given as header keywords rather than as table columns.

ZSCALE and ZZERO are typically used to scale floating-point images (with BITPIX = -32 or
-64) into integers before compression, since most compression algorithms are not very efficient
with floating-point data. One particularly effective scaling algorithm is described in the next
section.

These 2 parameters should not be confused with the reserved BSCALE and BZERO keywords
which may be present in integer FITS images (which have BITPIX = 8, 16, or 32). Any such
integer images should normally be compressed without any further scaling, and the BSCALE

and BZERO keywords should be copied verbatim into the header of the binary table containing
the compressed image.

• ZBLANK (optional column) In cases where floating-point images are converted to integers before
being compressed, this column gives the the integer value that is used to represent undefined
pixels (if any) in the image. These pixels would have an IEEE NaN (Not a Number) value
in the uncompressed floating-point FITS image. If every tile uses the same null value, then
ZBLANK may be given as a keyword instead of as a table column. If there are no undefined
pixels in the image then ZBLANK is not required. If the uncompressed image has an integer
datatype (ZBITPIX > 0) then the reserved BLANK keyword which already serves this purpose
should be used instead of ZBLANK.

• NULL PIXEL MASK (optional column) In cases where the image contains undefined pixels and
a lossy compression algorithm is used (and hence the pixel values are not exactly preserved)
then this column is used to store a compressed image mask that records the location of any
undefined pixels. See the “Preserving undefined pixels with lossy compression” section for
more details.

• Other Columns Any number of other columns may be present in the table to supply other
parameters that relate to each image tile.

4 Quantization of Floating-Point Data

Images that have floating-point data type pixels often do not compress very effectively due to the
presence of noise in the least significant bits of the pixel values. In order to achieve a higher degree
of compression, one can effectively discard some of the noise bits by linearly scaling the image into
integer pixel values, so that

Fi = (Ii * ZSCALE) + ZZERO

where Ii and Fi are the integer and floating-point values, respectively.
Note that the tiled image compression convention does not require that floating point images

be scaled to integers before compressing them, but if linear scaling is performed, then the ZSCALE
and ZZERO columns in the FITS binary table should be used to record the 2 scaling coefficients,
as described in the previous section.

The maximum amount of numerical precision will be preserved if the ZSCALE and ZZERO
values are calculated such that the scaled pixel values span the full range of the integer datatype
(e.g., from -32768 to +32767 for 16-bit integers). This may also preserve an undesirable amount of
non-significant noise, which can adversely affect the amount of compression that can be achieved.

4



A more effective scaling algorithm that preserves a specified amount of noise in each pixel value
is described by White and Greenfield (in the Proceedings of the 1998 ADASS VIII conference)
and by Pence, Seaman, and White, PASP 121, 414 (2009). With this method, the ZSCALE value
(which is numerically equal to the spacing between adjacent quantization levels) is calculated to
be some fraction, Q, of the RMS noise as measured in background regions of the image. It can be
shown that the number of binary bits of noise that are preserved in each pixel value is given by
log2(Q) + 1.792. For example, using Q = 8 (so that the quantized levels have a spacing of 1/8th of
the background RMS noise value) produces a quantized image that preserves about 4.8 bits of noise
in each pixel. Specifying the quantization level relative to the amount of noise in the image in this
way produces comparable quality images regardless of the noise level. Q is directly related to the
compressed file size: decreasing Q by a factor of 2 will decrease the file size by about 1 bit/pixel.
In order to achieve the greatest amount of compression, one should use the smallest value of Q that
still preserves the required amount of photometric and astrometric precision in the image.

As the Q value is decreased, the spacing between the quantized levels in the image increases,
which can have the undesirable effect of significantly biasing the pixel values in the faint regions the
image (i.e., the ’sky’ level in typical astronomical images). This bias can be mitigated by adding
noise during the quantization process. So instead of simply scaling every pixel value using the
equation:

Ii = ROUND((Fi - ZZERO) / ZSCALE)

(where the ROUND function rounds the result to the nearest integer value) one can randomize the
quantized levels by using this slightly modified equation:

Ii = ROUND(((Fi - ZZERO) / ZSCALE) + Ri - 0.5)

where Ri is a random number between 0 and 1, and the 0.5 is subtracted so that the mean quantity
is equal to 0. Then when restoring the floating-point value, the same random number is used with
the inverse formula

Fi = ((Ii - Ri +0.5) * ZSCALE) + ZZERO

This technique, which is referred to as ‘subtractive dithering’ in the signal processing literature
(e.g., ”Quantization Noise” by Widrow and Kollar) has the effect of dithering the zero-point of the
quantization grid on a pixel by pixel basis without introducing any additional noise in the image.
The net effect of this is that the mean (and median) pixel value in faint regions of the image more
closely approximate the value in the original unquantized image than if all the pixels are scaled
without randomization. This can significantly increase the precision when measuring the net flux
from faint sources in the compressed image.

The key requirement when using this technique is that the exact same random number sequence
must be used when quantizing the pixel values to integers, and when restoring them to floating point
values. While most computer languages supply a function for generating random numbers, these
functions are not guaranteed to generate the same sequence of numbers every time. Accordingly,
we define a specific algorithm here for generating a repeatable sequence of pseudo random numbers.
The steps in the algorithm for quantizing (or unquantizing) each tile of the image are as follows:

1. Generate a sequence of 10000 random numbers using the algorithm given in Appendix A.
Since it would be computationally expensive to generate a unique random number for every
pixel of large images, we repeatedly recycle through this ‘look up table’ of random numbers.
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2. The above sequence of random numbers is used when quantizing or unquantizing each tile of
the floating point image. In order to avoid possible ‘banding’ effects if one were to use exactly
the same sequence of random numbers for every tile, we calculate a unique, random offset to
the first random number in the sequence to use as a function of the tile number using the
formula:

offset = INT ( 500. * R(N) ) + 1

where offset is the ones-based index to the first random number in the sequence to use, INT
is the floating-point to integer truncation function, and R(N) is the Nth random number in
the sequence where N is the tile number. If N exceeds 10000, then one should use ((N - 1)
modulo 10000) + 1. So for example, when compressing the 2nd tile in an image, the 2nd
random number in the sequence has a value of 0.131538, and thus the offset value is 66. For
reference, the 66th random number should have a value of 0.493977.

This random number is then used to quantize (or unquantize) the first pixel of this tile using
the subtractive dithering function given above. The next random number in the sequence is
then used for next pixel in the tile, and so on.

3. If one reaches the end of the sequence of 10000 random numbers while quantizing or unquan-
tizing the pixels in tile N, then one should cycle back through the random number sequence,
using a new random starting offset calculated using the Nth + 1 random number. For exam-
ple, if one is quantizing tile number 9 of the image, the original starting offset values would
be calculated by multiplying the 9th random number (0.679296) in the sequence by 500 (plus
1). Then if one reaches the end of the random number sequence again, the next starting offset
value is calculated using the 10th random number (0.934693). If necessary, this process is
repeated using the next random number each time (starting over at 1 if one reaches 10000).

4. Repeat Steps 2 and 3 for each tile of the image.

The above algorithm is clearly not unique, but we present it here as a well defined method
that should be easy to implement in almost any computer language. If this particular ’subtractive
dithering’ algorithm is used when quantizing a floating point image, then the following keyword
should be recorded in the compressed image header:

ZQUANTIZ= ’SUBTRACTIVE_DITHER_1’

Other values for this keyword may be defined in the future to identify other quantizing methods.
If this keyword is not present in the header of a tile-compressed, quantized, floating-point image,
then it should be assumed that only simple linear scaling was applied when quantizing the image.

It should be noted that an image that is quantized using this technique can still be unquantized
using the simple linear scaling function. The only side effect in this case is to introduce slightly
more noise in the image than if the full subtractive dithering algorithm were applied.

5 Preserving undefined pixels with lossy compression

Any undefined pixels in a FITS image are flagged with a special pixel value: the BLANK keyword
specifies the value in integer data type FITS images, and an IEEE NaN (Not a Number) value is used
in single or double precision floating point FITS images. Floating point images are often converted
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to scaled integers prior to compression (as described previously) in which case the undefined pixel
value is then given by the ZBLANK keyword (or column).

The null pixel values in the image will be preserved if a lossless compression algorithm is used.
If the image is compressed with a lossy algorithm (e.g., H-Compress with a scale factor greater
than 1), then some other technique must be used to identify the null pixels in the image.

The recommended method of recording the null pixels when a lossy compression algorithm is
used is to create an integer data mask with the same dimensions as the image tile. Set the null
pixels to 1 and all the other pixels to 0, then compress the mask array using a lossless algorithm
such as PLIO or GZIP. Store the compressed byte stream in a variable-length array column called
’NULL PIXEL MASK’ in the row corresponding to that image tile. The ZMASKCMP keyword
should be used to record the name of the algorithm used to compress the data mask (e.g., RICE 1).
The data mask array pixels will be assumed to have the shortest integer datatype that is supported
by the compression algorithm (i.e., usually 8-bit bytes).

When uncompressing the image tile, the software must check if the corresponding compressed
data mask exists with a length greater than 0, and if so, then uncompress the mask and set the
corresponding undefined pixels in the image array to the appropriate value (as given by the BLANK
or ZBLANK keyword).

6 Currently Implemented Compression Algorithms

This section describes the 4 compression algorithms that are currently supported in the CFITSIO
implementation of this tiled image compression convention (available from the HEASARC web
site). This does not imply that other implementations of this convention must support these same
algorithms, nor does it limit other implementations from supporting other compression algorithms.

6.1 Rice compression algorithm

The Rice algorithm (Rice, R. F., Yeh, P.-S., and Miller, W. H. 1993, in Proc. of the 9th AIAA Com-
puting in Aerospace Conf., AIAA-93-4541-CP, American Institute of Aeronautics and Astronautics)
is simple and very fast, compressing or decompressing 107 pixels/sec on modern workstations. It
requires only enough memory to hold a single block of 16 or 32 pixels at a time. It codes the pixels
in small blocks and so is able to adapt very quickly to changes in the input image statistics (e.g.,
Rice has no problem handling cosmic rays, bright stars, saturated pixels, etc.).

The block size that is used should be recorded in the compressed image header with

ZNAMEn = ’BLOCKSIZE’

ZVALn = 16 or 32

If these keywords are absent, then a default blocksize of 32 should be assumed.
The number of 8-bit bytes in each original integer pixel value should be recorded in the com-

pressed image header with

ZNAMEn = ’BYTEPIX’

ZVALn = 1, 2, 4, or 8

If these keywords are absent, then the default value of 4 bytes per pixel (32 bits) should be assumed..
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6.2 GZIP compression algorithm

Gzip is the compression algorithm used in the widely distributed GNU free software utility of the
same name. It was created by Jean-loup Gailly and Mark Adler. Version 0.1 was first publicly
released on October 31, 1992. Version 1.0 followed in February 1993. It is based on the DEFLATE
algorithm, which is a combination of LZ77 and Huffman coding. DEFLATE was intended as a
replacement for LZW and other patent-encumbered data compression algorithms which, at the
time, limited the usability of compress and other popular archivers. Further information about this
compression technique is readily available on the Internet.

The gzip algorithm has no associated parameters that need to be specified with the ZNAMEn

and ZVALn keywords.

6.3 IRAF PLIO compression algorithm

The IRAF PLIO (pixel list) algorithm was developed to store integer-valued image masks in a
compressed form. Typical uses of image masks are to segment images into regions, or to mark
bad pixels. Such masks often have large regions of constant value hence are highly compressible.
The compression algorithm used is based on run-length encoding, with the ability to dynamically
follow level changes in the image, allowing a 16-bit encoding to be used regardless of the image
depth. The worst case performance occurs when successive pixels have different values. Even in
this case the encoding will only require one word (16 bits) per mask pixel, provided either the delta
intensity change between pixels is usually less than 12 bits, or the mask represents a zero floored
step function of constant height. The worst case cannot exceed npix*2 words provided the mask
depth is 24 bits or less.

A good compromise between storage efficiency and efficiency of runtime access, while keeping
things simple, is achieved if we maintain the compressed line lists as variable length arrays of type
short integer (16 bits per list element), regardless of the mask depth. A line list consists of a series
of simple instructions which are executed in sequence to reconstruct a line of the mask. Each 16
bit instruction consists of the sign bit (not used at present), a three bit opcode, and twelve bits of
data, i.e.:

+--+-----------+-----------------------------+

|16|15 13|12 1|

+--+-----------+-----------------------------+

| | opcode | data |

+--+-----------------------------------------+

The significance of the data depends upon the instruction. The instructions currently implemented
are summarized in the table below.

Instruction Opcode Description

ZN 00 Output N zeros

HN 04 Output N high values

PN 05 Output N-1 zeros plus one high value

SH 01 Set high value, absolute

IH,DH 02,03 Increment or decrement high value

IS,DS 06,07 Like IH-DH, plus output one high value
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In order to reconstruct a mask line, the application executing these instructions is required to
keep track of two values, the current high value and the current position in the output line. The
detailed operation of each instruction is as follows:

ZN Zero the next N (=data) output pixels.

HN Set the next N output pixels to the current high value.

PN Zero the next N-1 output pixels, and set pixel N to the current high value.

SH Set the high value (absolute rather than incremental), taking the high 15 bits from the next
word in the instruction stream, and the low 12 bits from the current data value.

IH,DH Increment (IH) or decrement (DH) the current high value by the data value. The current
position is not affected.

IS,DS Increment (IS) or decrement (DS) the current high value by the data value, and step, i.e.,
output one high value.

The high value is assumed to be set to 1 at the beginning of a line, hence the IH,DH and IS,DS
instructions are not normally needed for Boolean masks. If the length of a line segment of constant
value or the difference between two successive high values exceeds 4096 (12 bits), then multiple
instructions are required to describe the segment or intensity change.

6.4 H-Compress algorithm

HCOMPRESS is an the image compression package written by Richard L. White for use at the
Space Telescope Science Institute (rlw@stsci.edu). Hcompress was used to compress the STScI
Digitized Sky Survey and has also been used to compress the preview images in the Hubble Data
Archive. Briefly, the method used is:

1. a wavelet transform called the H-transform (a Haar transform generalized to two dimensions),
followed by

2. quantization that discards noise in the image while retaining the signal on all scales, followed
by

3. quadtree coding of the quantized coefficients.

The technique gives very good compression for astronomical images and is relatively fast. The
calculations are carried out using integer arithmetic and are entirely reversible. Consequently, the
program can be used for either lossy or lossless compression, with no special approach needed for
the lossless case (e.g. there is no need for a file of residuals.)

There are 2 user-defined parameters associated with the H-Compress algorithm: an integer scale
factor that determines the amount of compression, and a Boolean parameter the specifies whether
the image should be smoothed during the decompression operation, to reduce residual artifacts in
the image.

• Scale Factor. The integer scale parameter determines the amount of compression. Scale =
0 or 1 leads to lossless compression, i.e. the decompressed image has exactly the same pixel
values as the original image. If the scale factor is greater than 1 then the compression is
lossy: the decompressed image will not be exactly the same as the original. For astronomical
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images, lossless compression is generally rather ineffective because the images have a good
deal of noise, which is inherently incompressible. However, if some of this noise is discarded
then the images compress very well. The scale factor determines how much of the noise
is discarded. Setting scale to 2 times sigma, the RMS noise in the image, usually results in
compression by about a factor of 10 (i.e. the compressed image requires about 1.5 bits/pixel),
while producing a decompressed image that is nearly indistinguishable from the original. In
fact, the RMS difference between the decompressed image and the original image will be
only about 1/2 sigma. Experiments indicate that this level of loss has no noticeable effect
on either the visual appearance of the image or on quantitative analysis of the image (e.g.
measurements of positions and brightnesses of stars are not adversely affected.)

Using a larger value for scale results in higher compression at the cost of larger differences
between the compressed and original images. A rough rule of thumb is that if scale equals N
sigma, then the image will compress to about 3/N bits/pixel, and the RMS difference between
the original and the compressed image will be about N/4 sigma. This crude relationship is
inaccurate both for very high compression ratios and for lossless compression, but it does at
least give an indication of what to expect of the compressed images.

For images in which the noise varies from pixel to pixel (e.g. CCD images, where the noise
is larger for brighter pixels), the appropriate value for scale is determined by the RMS noise
level in the sky regions of the image. For images that are essentially noiseless, any lossy
compression is noticeable under sufficiently close inspection of the image, but some loss is
nonetheless acceptable for typical applications. Note that the quantization scheme used in
hcompress is not designed to give images that appear as much like the original as possible to
the human eye, but rather is designed to produce images that are as similar as possi- ble to
the original under quantitative analysis. Thus, the emphasis is on discarding noise without
affecting the signal rather than on discarding components of the image that are not very
noticeable to the eye (as may be done, for example, by JPEG compression.) The resulting
compression scheme is not ideal for typical terrestrial images (though it is still a reasonably
good method for those images), but is believed to be close to optimal for astronomical images.

It is not necessary to know what scale factor was used when compressing the image in order
to uncompress it, but it is still useful to record the value that was used. It is recommended
that the ZNAMEn and ZVALn) pair of keywords be used for this purpose, with

ZNAMEn = ’SCALE’

ZVALn = I

where I is the integer scale value.

• Smoothing Flag. At high compressions factors the decompressed image begins to appear
blocky because of the way information is discarded. This blockiness ness is greatly reduced,
producing more pleasing images, if the image is smoothed slightly during decompression.
When done properly, the smoothing will not affect any quantitative photometric or astromet-
ric measurements derived from the compressed image. Of course, the smoothing should never
be applied when the image has been losslessly compressed with a scale factor (defined above)
of 0 or 1.

The smoothing option only needs to be specified when uncompressing the image, however, in
many cases, this can best be determined by the person or project that creates the compressed
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image files. Thus it is recommended that the smoothing flag be specified in the compressed
image header with the ZNAMEn and ZVALn keywords with

ZNAMEn = ’SMOOTH’

ZVALn = 0 or 1

A value of 0 means no smoothing, and any other value means smoothing is recommended.
This should be regarded as only a recommendation which the image decompression program
may override.

A paper describing HCompress was published in the Proceedings of the NASA Space and Earth
Science Data Compression Workshop, ed. James C. Tilton, Snowbird, Utah, March 1992. This
paper is reproduced in the Appendix B of this document.

A Random Number Generator

This portable random number generator algorithm comes from the publication “Random number
generators: good ones are hard to find”, Communications of the ACM, Volume 31 , Issue 10
(October 1988) Pages: 1192 - 1201 which is available on the Web. This algorithm basically just
repeatedly evaluates the function seed = (a * seed) mod m, where the values of a and m are shown
below, but it is implemented in a way to avoid integer overflow problems.

int random_generator(void) {

/* initialize an array of random numbers */

int ii;

double a = 16807.0;

double m = 2147483647.0;

double temp, seed;

float rand_value[10000];

/* initialize the random numbers */

seed = 1;

for (ii = 0; ii < N_RANDOM; ii++) {

temp = a * seed;

seed = temp -m * ((int) (temp / m) );

rand_value[ii] = seed / m; /* divide by m to get value between 0 and 1 */

}

}

If implemented correctly, the 10000th value of seed must equal 1043618065.
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B High-Performance Compression of Astronomical Images

Richard L. White

Joint Institute for Laboratory Astrophysics, University of Colorado

Campus Box 440, Boulder, CO 80309

and

Space Telescope Science Institute

3700 San Martin Drive, Baltimore, MD 21218

rlw@stsci.edu

Summary

Astronomical images have some rather unusual characteristics that make many existing image
compression techniques either ineffective or inapplicable. A typical image consists of a nearly
flat background sprinkled with point sources and occasional extended sources. The images are
often noisy, so that lossless compression does not work very well; furthermore, the images are
usually subjected to stringent quantitative analysis, so any lossy compression method must be
proven not to discard useful information, but must instead discard only the noise. Finally, the
images can be extremely large. For example, the Space Telescope Science Institute has digitized
photographic plates covering the entire sky, generating 1500 images each having 14000× 14000 16-
bit pixels. Several astronomical groups are now constructing cameras with mosaics of large CCDs
(each 2048×2048 or larger); these instruments will be used in projects that generate data at a rate
exceeding 100 MBytes every 5 minutes for many years.

An effective technique for image compression may be based on the H-transform/ (Fritze et al.
1977). The method that we have developed can be used for either lossless or lossy compression.
The digitized sky survey images can be compressed by at least a factor of 10 with no noticeable
losses in the astrometric and photometric properties of the compressed images. The method has
been designed to be computationally efficient: compression or decompression of a 512 × 512 image
requires only 4 seconds on a Sun SPARCstation 1. The algorithm uses only integer arithmetic, so
it is completely reversible in its lossless mode, and it could easily be implemented in hardware for
space applications.

1. Introduction

Astronomical images consist largely of empty sky. Compression of such images can reduce the
volume of data that it is necessary to store (an important consideration for large scale digital sky
surveys) and can shorten the time required to transmit images (useful for remote observing or
remote access to data archives.)

Data compression methods can be classified as either “lossless” (meaning that the original data
can be reconstructed exactly from the compressed data) or “lossy” (meaning that the uncompressed
image is not exactly the same as the original.) Astronomers often insist that they can accept
only lossless compression, in part because of conservatism, and in part because the familiar lossy
compression methods sacrifice some information that is needed for accurate analysis of image data.
However, since all astronomical images contain noise, which is inherently incompressible, lossy
compression methods produce much better compression results.

A simple example may make this clear. One of the simplest data compression techniques is
run-length coding, in which runs of consecutive pixels having the same value are compressed by
storing the pixel value and the repetition factor. This method is used in the standard compression
scheme for facsimile transmissions. Unfortunately, it is quite ineffective for lossless compression of
astronomical images because even though the sky is nearly constant, the noise in the sky ensures

12



that only very short runs of equal pixels occur. The obvious way to make run-length coding more
effective is to force the sky to be exactly constant by setting all pixels below a threshold (chosen to
be just above the sky) to the mean sky value. However, then one has lost any information about
objects close to the detection limit. One has also lost information about local variations in the
sky brightness, which severely limits the accuracy of photometry and astrometry on faint objects.
Worse, there may be extended, low surface brightness objects that are not detectable in a single
pixel but that are easily detected when the image is smoothed over a number of pixels; such faint
structures are irretrievably lost when the image is thresholded to improve compression.

2. The H-transform

Fritze et al. (1977; see also Richter 1978 and Capaccioli et al. 1988) have developed a much
better compression method for astronomical images based on what they call the H-transform of
the image. A similar transform called the S-transform has also been used for image compression
(Blume & Fand 1989). The H-transform is a two-dimensional generalization of the Haar transform
(Haar 1910). The H-transform/ is calculated for an image of size 2N

× 2N as follows:

• Divide the image up into blocks of 2× 2 pixels. Call the 4 pixels in a block a00, a10, a01, and
a11.

• For each block compute 4 coefficients:

h0 = (a11 + a10 + a01 + a00)/2
hx = (a11 + a10 − a01 − a00)/2
hy = (a11 − a10 + a01 − a00)/2
hc = (a11 − a10 − a01 + a00)/2

• Construct a 2N−1
× 2N−1 image from the h0 values for each 2 × 2 block. Divide that image

up into 2× 2 blocks and repeat the above calculation. Repeat this process N times, reducing
the image in size by a factor of 2 at each step, until only one h0 value remains.

This calculation can be easily inverted to recover the original image from its transform. The
transform is exactly reversible using integer arithmetic if one does not divide by 2 for the first set
of coefficients. It is straightforward to extend the definition of the transform so that it can be
computed for non-square images that do not have sides that are powers of 2. The H-transform can
be performed in place in memory and is very fast to compute, requiring about 16M2/3 (integer)
additions for a M × M image.

The H-transform is a simple 2-dimensional wavelet transform. It has several advantages over
some other wavelet transforms that have been applied to image compression (e.g., Daubechies
1988). First, the transform can be performed entirely with integer arithmetic, making it exactly
reversible. Consequently it can be used for either lossless or lossy compression (as indicated below)
and one does not need a special technique for the case of lossless compression (as was required,
e.g., for the JPEG compression standard.)

A second major advantage is that the H-transform is a natively 2-dimensional wavelet transform.
The standard 1-dimensional wavelet transforms are extended to two dimensions by transforming
the image first along the rows, then along the columns. Unfortunately, this generates many wavelet
coefficients that are high frequency (hence localized) in the x-direction but low frequency (hence
global) in the y-direction. Such coefficients are counter to the philosophy of the wavelet trans-
form: high-frequency basis functions should be confined to a relatively small area of the image.
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Discarding these mixed-scale terms, which may be negligible compared to the noise, generates very
objectionable artifacts around point sources and edges in the image. The H-transform, on the other
hand, is a fully 2-dimensional wavelet transform, with all high frequency terms being completely
localized. It is consequently more suitable for image compression and produces fewer artifacts.

A possible disadvantage of the H-transform is that other wavelet transforms take better advan-
tage of the continuity of pixel values within images, so that they can produce higher compressions
for very smooth images. However, for astronomical images (which are mostly flat sky sprinkled
with point sources) the smoothness built into higher-order transforms can actually reduce the ef-
fectiveness of compression, because one must keep more coefficients to describe each point source.

3. Compression Using the H-transform

If the image is nearly noiseless, the H-transform is somewhat easier to compress than the original
image because the differences of adjacent pixels (as computed in the H-transform) tend to be smaller
than the original pixel values for smooth images. Consequently fewer bits are required to store the
values of the H-transform coefficients than are required for the original image. For very smooth
images the pixel values may be constant over large regions, leading to transform coefficients that
are zero over large areas.

Noisy images still do not compress well when transformed, though. Suppose there is noise σ in
each pixel of the original image. Then from simple propagation of errors, the noise in each of the
H-transform coefficients is also σ. To compress noisy images, divide each coefficient by Sσ, where
S ∼ 1 is chosen according to how much loss is acceptable. This reduces the noise in the transform
to 0.5/S, so that large portions of the transform are zero (or nearly zero) and the transform is
highly compressible.

Why is this better than simply thresholding the original image? As discussed above, if we
simply divide the image by σ then we lose all information on objects that are within 1σ of sky in a
single pixel, but that are detectable by averaging a block of pixels. On the other hand, in dividing
the H-transform by σ, we preserve the information on any object that is detectable by summing
a block of pixels! The quantized H-transform preserves the mean of the image for every block of
pixels having a mean significantly different than that of neighboring blocks of pixels.

As an example, Figure 1 shows a 128 × 128 section (3.6 × 3.6 arcmin) from a digitized version
of the Palomar Observatory–National Geographic Society Sky Survey plate containing the Coma
cluster of galaxies. Figures 2, 3, and 4 show the resulting image for S ≃ 0.5, 1, and 2. These images
are compressed by factors of 10, 20, and 60 using the coding scheme described below. In all cases a
logarithmic gray scale is used to show the maximum detail in the image near the sky background
level; the noise is clearly visible in Figure 1. The image compressed by a factor of 10 is hardly
distinguishable from the original. In quantizing the H-transform we have adaptively filtered the
original image by discarding information on some scales and keeping information on other scales.
This adaptive filtering is most apparent for high compression factors (Fig. 4), where the sky has
been smoothed over large areas while the images of stars have hardly been affected.

The adaptive filtering is, in itself, of considerable interest as an analytical tool for images
(Capaccioli et al. 1988). For example, one can use the adaptive smoothing of the H-transform
to smooth the sky without affecting objects detected above the (locally determined) sky; then an
accurate sky value can be determined by reference to any nearby pixel.

The blockiness that is visible in Figure 4 is the result of difference coefficients being set to zero
over large areas, so that blocks of pixels are replaced by their averages. It is possible to eliminate
the blocks by an appropriate filtering of the image. A simple but effective filter can be derived
by simply adjusting the H-transform coefficients as the transform is inverted to produce a smooth
image; as long as changes in the coefficients are limited to ±Sσ/2, the resulting image will still be
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consistent with the thresholded H-transform.

4. Efficient Coding

The quantized H-transform has a rather peculiar structure. Not only are large areas of the
transform image zero, but the non-zero values are strongly concentrated in the lower-order coeffi-
cients. The best approach we have found to code the coefficient values efficiently is quadtree coding
of each bitplane of the transform array. Quadtree coding has been used for many purposes (see
Samet 1984 for a review); the particular form we are using was suggested by Huang and Bijaoui
(1991) for image compression.

• Divide the bitplane up into 4 quadrants. For each quadrant code a ‘1’ if there are any 1-bits
in the quadrant, else code a ‘0’.

• Subdivide each quadrant that is not all zero into 4 more pieces and code them similarly.
Continue until one is down to the level of individual pixels.

This coding (which Huang and Bijauoi call “hierarchic 4-bit one” coding) is obviously very well
suited to the H-transform image because successively lower orders of the H-transform coefficients
are located in successively divided quadrants of the image.

We follow the quadtree coding with a fixed Huffman coding that uses 3 bits for quadtree values
that are common (e.g., 0001, 0010, 0100, and 1000) and uses 4 or 5 bits for less common values.
This reduces the final compressed file size by about 10% at little computational cost. Slightly better
compression can be achieved by following quadtree coding with arithmetic coding (Witten, Bell,
and Cleary 1987), but the CPU costs of arithmetic coding are not, in our view, justified for 3–4%
better compression. We have also tried using arithmetic coding directly on the H-transform, with
various contexts of neighboring pixels, but find it to be both computationally inefficient and not
significantly better than quadtree coding.

For completely random bitplanes, quadtree coding can actually use more storage than simply
writing the bitplane directly; in that case we just dump the bitplane with no coding.

Note that by coding the transform one bitplane at a time, the compressed data can be viewed
as an incremental description of the image. One can initially transmit a crude representation
of the image using only the small amount of data that is required for the sparsely populated,
most significant bit planes. Then the lower bit planes can be added one by one until the desired
accuracy is required. This could be useful, for example, if the data is to be retrieved from a remote
database — one could examine the crude version of the image (retrieved very quickly) and abort
the transmission of the rest of the data if the image is judged to be uninteresting.

5. Astrometric and Photometric Properties of Compressed Images

Astronomical images are not simply subjected to visual examination, but are also subjected
to careful quantitative analysis. For example, for the image in Figure 1 one would typically like
to do astrometric (positional) measurements of objects to an accuracy much better than 1 pixel,
photometric (brightness) measurements of objects to an accuracy limited only by the detector
response and the noise, and accurate measurements of the surface brightness of extended sources.

We have done some experiments to study the degradation of astrometry and photometry on the
compressed images compared to the original images (White, Postman, and Lattanzi 1991). Even the
most highly compressed images have very good photometric properties for both point sources and
extended sources; indeed, photometry of extended objects can be improved by the adaptive filtering
of the H-transform (Capaccioli et al. 1988). Astrometry is hardly affected by the compression for
modest compression factors (up to about a factor of 20 for our digitized photographic plates), but
does begin to degrade for the most highly compressed images.
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These results are based on tests carried out with tools optimized for the original images; it
is likely the best results will be obtained for highly compressed images only with analysis tools
specifically adapted to the peculiar noise characteristics of the compressed images.

6. Conclusions

In order to construct the Guide Star Catalog for use in pointing the Hubble Space Telescope, the
Space Telescope Science Institute scanned and digitized wide-field photographic plates covering the
entire sky. The digitized plates are of great utility, but to date it has been impossible to distribute
the scans because of the massive volume of data involved (a total of about 600 Gbytes). Using
the compression techniques described in this paper, we plan to distribute our digital sky survey on
CD-ROMs; about 100 CD-ROMs will be required if the survey is compressed by a factor of 10.

The algorithm described in this paper has been shown to be capable of producing highly com-
pressed images that are very faithful to the original. Algorithms designed to work on the original
images can give comparable results on object detection, astrometry, and photometry when applied
to the images compressed by a factor of 10 or possibly more. Further experiments will determine
more precisely just what errors are introduced in the compressed data; it is possible that certain
kinds of analysis will give more accurate results on the compressed data than on the original because
of the adaptive filtering of the H-transform (Capaccioli et al. 1988).

This compression algorithm can be applied to any image, not just to digitized photographic
plates. Experiments on CCD images indicate that lossless compression factors of 3–30 can be
achieved depending on the CCD characteristics (e.g., the readout noise). A slightly modified
algorithm customized to the noise characteristics of the CCD will do better. This application will
be explored in detail in the future.

We gratefully acknowledge grant from NAGW-2166 from the Science Operations Branch of
NASA headquarters which supported this work. The Space Telescope Science Institute is operated
by AURA with funding from NASA and ESA.
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